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PREFACE

The work documented in this paper was performed by IDA as an internal Central

Research Project. The analyses presented herein grew out of and clarified ideas

introduced in a study entitled C-130 Remanufacturing Study,' conducted for the Office of

the Secretary of Defense (Acquisition and Technology).

We address the general problem of deciding whether to upgrade an existing
system that is aging or to replace it with a new one. The methodology developed in this
paper is equally applicable to any system, military or otherwise, and not just to C-130

modernization. Upgrading does not always avoid replacement entirely, but does defer it

to the future where discounting reduces the ultimate acquisition cost. On the other hand,

upgrading comes with a cost of its own and generally entails higher operating costs than a

new replacement system.

The authors wish to thank the IDA reviewers for their comments and insights: Dr.

David L. Randall, Mr. James N. Bexfield, Dr. Alfred I. Kaufman, and Mr. Stanley A.

Horowitz.
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MODEL FOR EVALUATING THE COST CONSEQUENCES OF
DEFERRING NEW SYSTEM ACQUISITION THROUGH

UPGRADES

This paper addresses a critical question confronting the Department of Defense

(DoD) in a time of reduced budgets. The DoD needs to continually modernize the

military forces under its authority but must do so with steadily reduced funding support.

The question for any system under consideration is between upgrading and replacement.

Some systems cannot be modernized without complete replacement. Stealth shaping of
aircraft fuselages to produce less vulnerable aircraft may be one such example. Many
others can be modernized through the installation of upgrades to existing systems. Airlift
aircraft may serve as an example of the latter. In general, upgrading is less costly in the

near term, but is only reasonable if the system that is being upgraded can perform well

enough and last long enough. And even with upgrades, if the life cycle period under
consideration is long enough, eventually the upgraded system will need replacement, so

acquisition is deferred, not avoided.

In this paper we consider the problem of determining whether to upgrade an

existing aging system or to replace it with a new one. This issue arose when we were

assisting the Office of the Secretary of Defense (OSD) to determine how to best

modernize C-130 cargo/transport aircraft. There are proponents for both replacing older
aircraft and upgrading them. Some existing aircraft are more than 30 years old and

require significant upgrades to meet reliability, performance, and safety requirements.

New C-130 aircraft will presumably cost less to operate because of higher reliability and

lower maintenance costs, but come with a high acquisition price.

We first develop the general formalism appropriate to answering the questions:

(1) buy now or (2) upgrade first and, if necessary, buy later? The formalism is

sufficiently general that it applies equally to trucks, ships, and aircraft. The approach

begins with simple assumptions--constant costs, a homogeneous population, and equal

performance levels. The latter sections extend the formalism to include such issues as

time-dependent costs, heterogeneous populations, performance differences, and risk.

1
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The two alternatives considered are as follows:

1. Upgrade-First: With this alternative, an existing system is upgraded now to
extend its service life; at a specific time in the future, a time treated initially as
a variable, it may be replaced by a new system. The major benefit is to delay
the large expenditure for a replacement system.

2. Replace-Now: With this alternative, the existing system is replaced by a new
system now. The major benefits are avoiding the upgrade cost and realizing
cumulative economies in operating costs.

Note that continued operation with the existing system is not considered as a third option.

Continued operation of the existing system may not be viable because of aging,

performance, safety, or commonality issues. However, if these impediments do not exist,

the model includes continued operation of the current system as a special case of the

Upgrade-First option, for which there is no cost for upgrading.

At this point, we shall assume that if there is a population of systems, it has
sufficient homogeneity with respect to the relevant characteristics to allow us to consider
only a single system in the analysis. Heterogeneous population issues are treated later.

A. DEFINITIONS AND NOTATION

The following terms and definitions are used in this paper:

Life cycle period-The number of years of operation used in the analysis.

Life cycle cost (LCC-The total cost associated with acquiring, operating, and

disposing of systems over the life cycle period.

Service life (SL)-The expected duration of usable service to be provided by a
system; typically, units are in such terms as operating hours, miles, and cycles.

For this paper, we use the more generic measure, age, measured in years. Given

an average usage per year (e.g., miles driven per year), one can easily convert age

to a more direct measure of system service life.

Existing system-A system currently in service.

Upgraded system-An existing system that has been upgraded to extend its

service life and which meets current requirements.

Replacement system-A new system that replaces an existing or upgraded system.

2
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Residual value-The worth of a system at the time it is removed from service or at

the end of the life cycle period.

We define the following variables. In all cases, the costs are expressed in constant

year dollars:

AU = cost to upgrade an existing system

Ar= cost to acquire a new system to replace an existing system

Cu = annual cost to operate an upgraded system

Cr = annual cost to operate a replacement system

Re(Y) = residual value of an existing system y years old

Ru(y) = residual value of an existing upgraded system y years after the upgrade

R,(y) = residual value of a new system y years after purchase

n = number of years an upgraded system is operated before it is replaced with a

new system

d = discount factor [= 1/(1 + i), where i > 0 is the interest or discount rate]

L = life cycle period, measured in number of years.

LCCA(L) = life cycle cost over L years when an existing system is upgraded now

and operated for L years

LCCU(L, n) = life cycle cost over L years when an existing system is upgraded

now and operated for n years before it is replaced by a new system

LCCA(L) = life cycle cost for L years when an existing system is replaced now.

We note below some assumed relationships between the variables:

Ar > Au, the constant-year cost to acquire a new system is greater than the cost to

upgrade the existing system

Cu > Cr, the annual operating cost of an upgraded system is greater than that of a

replacement system

Re(X) < Ru(x)< Rr(x), for the same time periods, the residual value of an existing

system is less than that of an upgraded system, which, in

turn, has a residual value less than a replacement system

0<d <1, since the discount rate is non-zero.

3
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Finally, we note that we can represent the case for continued operation with the

existing system by setting A, = 0. If this is done, C, would then represent the operational

cost of the existing system, and there would be no distinction between the existing system

residual value and that of the upgraded system, i.e., Re(y) = Rj(y).

B. EXAMPLE OF COST EXPENDITURE, DISCOUNTING, AND DECISION
TIMING

Because we are dealing with cost streams where the key issue is delaying an
expensive purchase through investing in an upgraded system now, we use a net present-

value life cycle cost criterion. That is, all future costs (positive and negative) are

discounted to the current year, which we define to be year 1. Discounting is the proper

manner in which to treat future expenditures, since it is a measure of the value of
deferring acquisitions to the future. It is through discounting that the benefits of deferred

acquisition are measured quantitatively.1

Let us illustrate the general principles with a simple example. Table 1 illustrates
the year-by-year cost, discounting, and residual value timing for a hypothetical case of
upgrading the existing system in year 1 and then replacing it at the beginning of year 4.
By definition, the value of n-the number of years an upgraded system operates before

replacement-is 3. A 7-year life cycle period is assumed in this example. The activities

and associated costs during each of the 7 years are shown in the table. For example, in
the column labeled year 1, the system is upgraded at cost A, for which the operating and

support (O&S) costs are C,. At the beginning of year 4 (equivalent to the end of year 3),
a new system is bought at a cost of Ar and a new O&S cost Cr is invoked. Moreover, the

old upgraded system is sold with an estimated residual value of R,(3), the value it has 3

years after upgrading.

We also assume that the upgrade and purchase actions take place at the beginning

of the year and that operating costs are spread evenly throughout the year. We use a mid-

year approximation for discounting the cost streams. Therefore, in the third year, the last
one operating with the existing upgraded system, the operating costs are discounted over

1 In accordance with OMB Circular A-94, Guidelines and Discount Rates for Benefit-Cost Analysis of
Federal Programs, any analysis used to determine whether a Government program can be justified on
economic principles must use net present value. For analyzing alternatives, the circular states, "A program
is cost-effective if, on the basis of life cycle cost analysis of competing alternatives, it is determined to have
the lowest costs expressed in present value terms for a given amount of benefits."

4
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2.5 years. At the beginning of the fourth year when the new system is purchased, the

acquisition costs are discounted for 3 years, but the operating costs, which occur over the

year, are discounted for 3.5 years. When the replacement system is purchased, there is a

credit for the residual value of the upgraded system, which has been operating for 3 years.

At the end of the life cycle period, there is a residual value credit for the replacement
system, which in this case has been operating for 4 years.

Table 1. Illustration of Timing and Discounting for Buying a New System After 3 Years

Year 1 2 3 = n 4 5 6 7 = L
Upgrade or Au Ar
Acquisition Cost

Discount period, 3 Yr.
Acquisition

Operating Cost C. u _ Cu Cr Cr Cr Cr

Discount Period, 0.5 Yr. 1.5 Yr. 2.5 Yr. 3.5 Yr. 4.5 Yr. 5.5 Yr. 6.5 Yr.
Operation

Residual Value Ru,(3) R44)
Discount Period, 3 Yr. 7 yr.
Residual Value

C. THE LIFE CYCLE COST MODEL WITH NO RESIDUAL VALUE

We use a very simple form for life cycle cost-namely acquisition or upgrade cost

plus yearly operating cost, discounted as appropriate. Issues such as development costs,

training, reliability impacts, maintenance requirements, and parts and materials costs are
assumed embodied in the acquisition/upgrade and operating costs. We also assume that

acquisition and operating costs remain constant over time.2 We defer consideration of

residual values to a later section.

2 This assumption may not be valid. If the new systems are currently in production, then delaying their
purchase may result in a cost increase, especially if the delay causes a production break. Similarly,
operating costs may increase with time. This is more likely for the upgraded existing systems, some of
which may have to undergo expensive structural repairs as they age. Incorporating time dependent cost
functions (if known) is not difficult except that a closed form analytical solution may be obviated. We
discuss this in more detail later.

5
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1. No Future Replacement of Upgraded System

We first consider the simplest case, where it is assumed that the service life of the

system after upgrade exceeds the sum of the system's current age and the life cycle

period. That is, we expect that an upgraded system will not have to be replaced before L

years after upgrade. If we denote the service life of the upgraded system by SL4 and the

age at upgrade by GR, both measured in years, we have this condition represented by the

formula,

G, + L < SL,. (1)

Through straightforward consideration we find that the life cycle cost for an

upgraded system is

L

LCC. (L) = A. + C. I d k-o.5 (2)
k=1

The first term represents the cost to upgrade. The second term is the discounted
operating cost stream over the life cycle period, with Ca being spent each year.

The corresponding life cycle cost for the Replace-Now alternative is

L

LCC r (L) = Ar + Cr I d k-o.5. (3)
k=1

If life cycle cost is the only basis for a decision between the two alternatives, one
should choose the Upgrade-First option if the total life cycle cost for upgrading is less

than that for replacement, i.e. if

LCC, (L) < LCCr (L) (4)

or,

6
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L L

A, +C" dk-O5 <ACr. dk+O C (5)
k=1 k=1

Through use of the following identity for a geometric series,

Xr'=r= r , r2 < 1, (6)

we find that the decision to upgrade first should be made if

Ar -Au >(Cu -Cr)dO' 1-d (7)
1-d

The left side of equation 7 is the difference in acquisition cost between the

upgraded and replacement systems. The right side is the present value of the stream of

operating cost differences.

2. Service Life May Require Replacement of an Upgraded System

We now consider the more interesting and perhaps more realistic case when

equation 1 is not valid; that is, the service life of an upgraded system may require it to be

replaced before the life cycle period expires. When this is true, the life cycle cost for

upgrading the existing system in year 1, operating it for n years, and replacing it at the

beginning of year (n+ 1) is

n L

LCC (L,n)= A, + C, _dk" 5 +Ard" +Cr dk 5 , l< n < L (8)
k=1 k=n+l

The four terms on the right side of the equation represent, respectively, the upgrade cost,

the discounted cost of operating the upgraded system for n years, the discounted cost of

purchasing the new system at the beginning of year (n+1), and the discounted cost of

operating the replacement system over the years n+ 1 through L.

For the special case in which a new system is bought in year 1 and there is no

upgrade, we have

7
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L

LCCr(L) = A, + CrYdk-0.
5

k=1

n L

=Ar +CrIdk.- 5 +-Cr ddk-° 5  (9)
k=l k=n+l

Note that we have deliberately written equation 9 so that its last term matches that of

equation 8. This term represents the operating costs from year (n+ 1) to the end of the life

cycle period, L. For this period, operations will be with the replacement system under

either alternative; therefore, we need not consider these years when comparing the life

cycle costs.

Unless noted otherwise, from hereon we shall only consider the case of having to

eventually replace an upgraded system before the life cycle period expires.

D. DETERMINATION OF MINIMUM LIFETIME FOR UPGRADING AN

EXISTING SYSTEM

1. General Formalism

If there exists an n * < L such that LCCu(L, n) < LCC,(L) for all n xŽ n *, then if the

remaining lifetime of an existing system is at least n*, it would be less costly to undertake

an upgrade program and defer replacement until year (n *+ 1) or after.

To determine the value of n*, we equate equations 8 and 9 and drop the identical

terms to get the equation
n n

Au + C" I dk'-°' + Ardt = Ar + Cr, dk-0.5
k=1 k=1 (10)

Using the geometric series formula given in equation 6, we obtain the following

relationship:

A, +Cd 0 1-dn+ Ard, = Ar +CdO.5ld 
(11)

1-d 1-d

On collecting terms involving n on the left side and multiplying both sides by (1-d), we

have

8
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(C. -Cr)d 0°5 (1-d")+(1-d)Ard" = (1-d)(Ar - A,,)

[(1- d)Ar -(C,, - C,.)d°05]d' = (1- d)(A, -A,,) -(C,, - Cr)d°05 (12)

d" (1-d)(Ar -A)-(Cu -Cr)d°0 5

(I - d)Ar - (Cu - Cr)d°0 5

On taking the logarithm of each side of the above equation and solving for n, the number
of years to defer replacement, we find the following crossover point, the point when the

two alternatives have equal life cycle costs:

In [(1 -d)(ar ,,)- " d (C5K,-C r
(I - -[(1 d)A- "-(.r) 1 (13)

Ind

Equation 13 is one of the central results of this paper, a closed-form solution for
the minimum lifetime needed by an upgraded system to be a cost-effective alternative to

acquiring a new system now, when the residual values of the alternatives are omitted.

It should be noted that there are combinations of parameters for which no real,
positive solution exists to equation 13. A solution is likely not to occur if the difference
in O&S cost is large, the difference in acquisition costs is small, and the discount factor d
is close to unity (discount rate i is close to zero). Such a case will usually result in a

negative value for the logarithmic argument in the numerator of equation 13. That there

is no solution for these parameters means that there never is a time for which upgrading is

less costly than buying a new system under these conditions. Under these circumstances,

buying a new system now would be preferred.

Note that the crossover point is independent of L, the life cycle period. For a
given set of input values where there is a solution, if n is less than zero, or if n is greater

than or equal to L, then the Replace-Now option is the preferred choice. If 1 _5n* < L,

then Upgrade-First is the lower cost alternative provided that the remaining lifetime of the
upgraded system is at least n A solution of n = 0 occurs when Au = 0; this special case
is discussed below.

9
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2. Example 1: No Residual Values

We consider a hypothetical system to gain insight into the general behavior of the
life cycle equations and of equation 13, the solution equation. Consider the following

inputs:

AU = $5 million C,= $1.5 million i = 0.035 (i.e. 3.5% discount rate)

Ar= $35 million Cr $1.0 million L = 20 years

Figure 1 shows the graphs of the life cycle costs for the two cases: (1) upgrade

first, then replace with new at year n, and (2) replace now (at year 1). It is seen that the
Upgrade-First alternative shows a decrease in life cycle cost with increasing values of n

and that the cost-equality point, in fact, does signify a crossover in favor of delaying the

new acquisition. To solve for the crossover point, we apply equation 13 and find that
n* = 8.14, which agrees with that shown on the graph in Figure 1. Thus, we conclude

for this example that if the remaining life of a current system after an upgrade is at least
8.14 years, then the Upgrade-First option is worthwhile pursuing. Again we note that we
are assuming that the life cycle cost is the only decision criterion, that an upgraded system

will not likely survive for 20 years, the life cycle period, and that differences in

performance are not relevant to the decision.

60

55- Upgrade

50 ___________________________

oReplace Now

45

0
40

>-35-

0 2 4 6 8 10 12 14 16 18 20

Year When Upgrade is Replaced

Figure 1. Comparison of Costs for Upgrade-First and Replace-Now Alternatives
(Example 1, No Residuals)
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Figure 2 shows the sensitivity of the results for a range of assumptions about

discount rate and difference in O&S costs between the two options. Note that there is

little variation within small excursions from the baseline value of 8.14 for the parameters

selected in this example. For more extreme excursions, the needed lifetime increases
more dramatically. As the difference in O&S costs increase and as the discount rate

decreases, the value of n* begins to rise dramatically. This is the expected behavior for

the discount rate, since the value of deferring new acquisition depends on discounting to

reduce the effective cost of the new system sometime in the future. The smaller the

discount rate, the more years needed to break even.

The results are less obvious for O&S cost differences. One might at first think
that the more costly the upgrade is to operate relative to the replacement, the fewer years

one would want the upgrade flying. But this ignores the impact of discounting on the
replacement acquisition cost. In fact, the more costly the upgrade is to operate relative to

the replacement, the more years are needed to discount adequately the acquisition cost of

the replacement in order to break even.

/•I 1-130-40

13--- ]20-30 6

• - a010-20

/ • [ 0-10 so

Number of Years
Needed

2.5- 2

3.0 -10

Discount 3.5
Rate (%) 4.0 - . 0 . 0.0

0.4

00.7 Annual O&S Cost Difference
($M, Upgraded minus New)

Figure 2. Dependence of Lifetime Needed on Discount Rate and Differences in O&S Costs
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3. Selected Features of the Formalism

a. Monotonicity

We now consider the monotonicity of the life cycle cost equation for the Upgrade-

First option. If it can be shown that LCC(Ln) is monotonically decreasing with n, then

given a solution n* > 0, we can be sure that operating the upgraded system for a number

of years n z? n* will retain the advantage of the Upgrade-First option. On taking the

partial derivative of LCC(Ln) with respect to n, we have

d[LCC(L,n)] FAr (Cu - Cr)d°'51

d = jdnlnd (14)

This result indicates that LCC(Ln) is monotonic with n, the direction depending on the

term inside the brackets. Since In d <0, (d is less than 1) the Upgrade-First life cycle cost

decreases with n if

Ar > (Cu -Cr)d°0 5  (15)1-d

Thus, if Ar is large relative to the operational cost difference adjusted by a discounting

factor, then LCC(Ln) decreases with n. Any value of n Ž n* will yield savings over the

Replace-Now option, and the savings increase with n.

By considering boundary cases for the variables, we can gain better insight into

the mechanism underlying the Upgrade-First versus Replace-Now decision.

b. No Discounting

We first consider the case of not doing a present value analysis. This is equivalent

to setting the discount rate, i, equal to zero, or setting the discount factor, d, to unity. For

d= 1 in equations 8 and 9, we get the following life cycle cost equations:

LCCu(L,n)=Au +Cun+Ar+Cr(L-n), ln<L (16)

LCCr(L) = Ar + Crn+ Cr(L- n) (17)

We find that LCC,(Ln) < LCC,(L) only if

AC < -:1&, where AC = (C, - Cr) (18)
n

12
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Note that this inequality is independent of Ar. Because A, is positive and AC is also (the

operating cost of an upgraded system is greater than that of a new system), the inequality

cannot be satisfied. Therefore, the Upgrade-First option cannot be less than the Replace-

Now option when discounting is not applied.

c. Equal Operating Costs

It is possible in some cases that there is negligible difference in O&S costs for the

upgraded and replacement systems. If AC is set equal to zero, we find from equation 13

the following solution for n

n in

Ind (19)

Since A, < Ar, both logarithmic arguments are between 0 and 1, and the ratio of
logarithms will always be positive; therefore, a solution for n* will always exist and be

greater than 0.

d. Equal Acquisition Costs

It should be obvious that if the upgrade and the replacement acquisition costs are

the same, the Replace-Now alternative will always be preferred. If we rewrite the original

life cycle cost equations for the case when Au=Ar=A, we find that the Upgrade-First

option has lower cost when

d" A< ---C Idk-°" (20)
A k=l

Since d, AC and A are assumed to be positive, this inequality cannot be satisfied, thus

reinforcing the intuitive notion that if an upgrade costs as much as a new system, one

ought to buy the new system.

e. Continued Operation With the Existing System

As indicated earlier, this situation can be modeled by setting A,=O. When this is
done, we find from equation 13 that n*=0, an ambiguous result implying either that a new

system should be bought now or that one should operate the existing system for as long as

possible. The correct decision depends on the monotonic direction of the life cycle cost,

LCC(L,n), which is determined through equation 15. If the direction is upward, replace
now; otherwise continue operation with the existing system for as long as possible.

13

UNCLASSIFIED



UNCLASSIFIED

E. LIFE CYCLE COST MODEL WITH RESIDUAL VALUES

1. General Formalism

The preceding formalism failed to account for the residual value of the systems

when they are retired and at the end of the life cycle period. We now address the

inclusion of residual values. Three types of residual values are considered:

1. Existing System: If a replacement system is bought initially, the existing
system may have some residual value, which we denote by Re(y), where y is
the age of the system. For our purposes, we will assume that the age of the
existing system does not significantly affect the residual value so that Re(y) =

Re, a constant. This is not unreasonable since we are considering systems so
old that they must either be upgraded or replaced. Therefore, the residual
value will be small (perhaps equal to the system salvage value) and most
likely will not be age-dependent. In this way, we avoid introducing another
variable.

2. Upgraded System: If the existing system is upgraded and then replaced after
n years of operation, it may have some residual value at that time. We denote
this value by R,,(n). This residual will have a discount factor reflecting n years
applied to it.

3. Replacement System: The last kind of residual value involves the
replacement system, which is assumed to be introduced at the beginning of
year (n+1). Since this system is new at that time, at the end of the life cycle
period, L, it will have been in operation for L-n years, and we denote its
residual value by R,(L-n). The applicable discount period is L years.

To incorporate residual values into the life cycle cost model for upgrading now

and then replacing the upgrade in n years later, we subtract out the terms R,(n)d" and

R,(L-n)d" from equation 8. To incorporate the residual values into the life cycle cost

model for the Replace-Now option, we subtract out the terms Re and Rr(L)d" from

equation 9.

After modifying equations 8 and 9 to include residual values, we obtain the

following life cycle cost equations:
n L

LCC,,(L,n) = A, + C,, dk-05 +[Ar - R,, (n)]dn + Cr Xdk-05 - Rr(L-n)d L
k=1 k=n+l

Sd-d -dL Ld
=d" +rd°n P(L-n)dL, nl

1-d 1-d (21)
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L

LCCr(L) = A, - Re + CrIdk-0.5 - Rr(L)dL
k=1

=Ar-Re+Crd05 1-dL Rr(L)dL
1-d (22)

To find the crossover point, we set LCC,(Ln) equal to LCCr(L) after first defining

the residual value functions Re, Ru(y), and R,(y). In general, the incorporation of residual

value functions will prevent a closed-form solution since they typically depend on n.

However, a solution is easily found by either plotting the life cycle cost functions and

noting the crossover point or using an iterative numerical method such as provided by the

Solver routine in Excel.

2. Example 2: Example 1 with Residual Values Included

This example is an extension of Example 1 but with residual values. We assume

the following functional dependencies of the residuals. All costs are expressed in

constant year millions of dollars:

Re = 0.1 ($100,000 is assumed to represent the salvage value of the

system)

Ru(y) = 0.6A, (0.9)y (assumes a 10 percent per year depreciation, starting with

60 percent of the upgrade cost)

R,(y) = 0.8A, (0.9)y (assumes a 10 percent per year depreciation, starting with

80 percent of the new system cost)

The graph of the two life cycle cost functions is shown in Figure 3. The crossover

point is approximately at 3.7 years, less than half the value for the no-residual case. The

inclusion of residuals reduces the lifetime required for the upgraded alternative to prove

itself cost-effective.

At first this might seem counter-intuitive. One might argue that because the

replacement systems have a much greater potential residual value than the existing or

upgraded systems, introducing residuals into the analysis would more likely favor buying

a replacement system over an upgrade and thus require an upgraded system to have a

longer lifetime. However, by purchasing the new system now, one minimizes its relative

residual value at the end of the life cycle period, i.e., a replacement now produces a 20-

year-old system at the end of a 20-year life cycle. A deferred replacement results in a

younger and more valuable system at the end of the same 20-year period. Therefore,
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delaying replacement system purchase by upgrading the existing system becomes even

more beneficial than for the case when residuals are not considered. That is why, in order
to show life cycle cost benefits, an upgraded system has to be able to survive only 3.7

years using residuals instead of 8.14 years without residuals.
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50. Replace Now
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Upgra de

Fiur 3.Cmaio FirostsfrUgdeFrtadRpa-NwAentis

40

* 40

30

0 2 4 6 8 10 12 14 16 18 20

Year When Upgrade Is Replaced

Figure 3. Comparison of Costs for Upgrade-First and Replace-Now Alternatives
(Example 2, Including Residuals)

F. ADDITONAL CONSIDERATIONS AND EXTENSIONS OF THE

FORMALISM

1. Time-Dependent Cost Functions

As discussed so far, the life cycle cost models are of a simple form, particularly
with respect to using constant values for the replacement system cost, Ar, and the

operating costs, C,,, and Cr. Since the replacement cost is incurred some time in the
future for the Upgrade-First option and the operating costs occur over the life cycle

period, the constancy assumption may not be valid. To provide greater generality to the

model, we can designate these model inputs as time-dependent functions. This would not

cause serious complications in the case of Ar, because that extension can be treated in the

same way we treated the residual values. However, for the operating cost values, which
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are summed over the n years, the equations become a bit more complicated. Rewriting

equation 8 to reflect time dependent cost functions, we have

n L

LCC,,(L,fn)= A,, + C. (k)dk-°O + Ar (n)d" + jCr(k- n)dk-°5' l <n<L
k=1 k=,,+l (23)

If we assume that operating costs increase by a constant percentage each year

(sometimes termed "maintenance creep"), we can eliminate the summation, terms. We

shall let P,, and Pr represent the creep percentages for the upgrade system and replacement

systems, respectively. Thus, for m years of operation under Case x, x = u or r, we have

C:,(M) = C, (I + p,)m, (24)

where C' represents the baseline cost, defined so that CJ(I+P) is the operating cost in

year 1.

This leads to the following life cycle cost equation for upgrading first and

replacing in year (n+ 1):

LCC,,(L,n)= Au +dO. 5(1+ p,)C 0 l-Q", _ Ar (n)d,, +dO.(1 - o(25)
•. A nd +d(+pr) Cr' O~r"-•(5

1-Qr 1r-Q

where

Qx =(1+Px)d, x=u, r (26)

Note that we define Ar(n) to be the cost of the replacement system when it is purchased n

years after the upgrade. The equivalent equation for the Replace-Now option is
L

LCCr(L) = Ar (0)+ 1 Cr(k)dk-O°5

k=l

=Ar(O) + d"C° (1 + Pr). (27)1-Qr

To determine the crossover point, if one exists, we can plot equations 25 and 27 or

use numerical methods as we did for the case of residuals. If residuals are also to be

considered, we must add the appropriate residual functions as we did to equations 21 and

22.
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2. Example 3: Example 1 with Time Dependent Cost Functions

The cost values used in Example 1 were as follows:

AU = $5 million Cu = $1.5 million

A,= $35 million Cr= $1.0 million

For the replacement system acquisition cost, we will now assume that the cost will

increase linearly by 0.5 percent for each year of delay so that

Ar (n) = 35[1 + 0.005 n]

We will also assume for this example that the above operating costs are for the first year

of operation and that the "creep" factor is 1 percent for the upgraded system and 0.5

percent for the replacement system. This leads to the following set of factors:

C: =1.5/1.01=1.463, C' =1/1.005=0.995
Q= =.Old = 0.976, Qr = 1.05d = 0.971

Using these inputs, the life cycle cost for the two alternatives can be plotted to

determine the crossover point, if one exists, or a numerical method can be used. Figure 4
shows the results. Also shown on the graph, as dotted curves, are the previous results
when the cost functions are not time dependent. For the latter, the crossover occurred at

8.14 years. With the time dependent factors we used, the life cycle costs increase, and the

upgraded system now has to survive 11.03 years before that option shows a life cycle cost

benefit. A result that may be counter-intuitive at first look is the following: if the new
system acquisition cost increases more than 1.1 percent per year, (a one-half percent per

year was used in the example), then one would not select the Upgrade-First alternative at

all. The discounting benefit cannot balance the increased cost of the new system

acquisition.

Note that, in general, with time-dependent cost, monotonicity of the life cycle cost
function for the upgrade option is no longer assured. If we had set the maintenance creep

of the upgraded system to be 2.5 percent instead of 1 percent, the associated life cycle

cost decreases to about $50.9 million at n=15 and then starts to increase. Therefore, the

life cycle cost for the Upgrade-First option never gets below the Replace-Now life cycle

cost of $50.01 million. This is illustrated in Figure 5.
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Figure 4. Comparison of Costs for Upgrade-First and Replace-Now Alternatives
(Example 3, Time Dependent Cost Functions)
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Figure 5. Illustration of Non-Monotonicity for Time-Dependent Cost Functions
(Example 3, Time Dependent Cost Functions With 2.5% Upgrade Creep Rate)
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3. Population Issues

a. Age and Modernization Factor Variability

Up to now we have considered only a single system. In this section, we consider

issues related to a population of systems. We assume that there is a set of characteristics
in the system population that, when considered in combination, require that the

population be modernized through upgrade or replacement. This combined characteristic,

herein termed the Modernization Factor, might well be represented by age, which often
acts as a surrogate for one or more other characteristics. Other possibilities for the

Modernization Factor are performance level, safety, commonality, and reliability.

The Single System Analysis, described earlier, would be valid if the population

was homogeneous with respect to age as well as with respect to the system

characteristic(s) defining the Modernization Factor. Two key questions are

"* Can one set of inputs (acquisition/upgrade cost, O&S cost, residual values) be
used for all systems in the population?

"* Can one decision be made that applies to all the systems?

If the answers to both questions are affirmative, then the Single System Analysis
approach is applicable. However, if there is variability in the population so that a single

set of inputs is not applicable, then it is probably wise to subdivide the population into

homogeneous groups and treat each group separately. In such a case, there may be some
groups for which an upgrade versus replace decision can be deferred until a critical value

is reached for the group's age or relevant system characteristic.

Assume now that the Modernization Factor is not age but a single set of cost

inputs is appropriate. For example, a fleet of vehicles may have to be modernized to meet

new emission and safety standards. Also assume that the ages or mileages of the vehicles

show significant variation but that the upgrade, operating costs, and residual values do

not vary significantly. In this case, a single system analysis may not be appropriate

because the decision to upgrade or replace depends on the remaining life of the vehicle

and such life is function of age. In this case, we can still find the minimum replacement

time, n *, to make the Upgrade-First option the better choice, and then system by system

determine whether to upgrade or replace now. If the age of a vehicle is such that its

remaining life is greater than n*, then upgrade first and replace when end-of-life is

reached. If the remaining life is less than n*, then replace now. We formalize this below

in establishing a replacement schedule for a population of systems with varying ages.
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b. Replacement Schedule

The section deals with situations when the ages within a population or analysis

group differ significantly but the population or group has been defined so that a single set

of cost inputs is satisfactory. For this case the decisions involve a number of systems,

each of differing age. This section derives formulae for the replacement schedule, given
the age distribution of the systems under consideration, an estimate of the required

replacement age, and a calculation of n*. The replacement schedule serves then as the

programmatic schedule for planning future investments.

Consider No systems. The current distribution of ages among these is given in
general by the frequency function N(a), where a represents the age in years, and N(a) is

the number of systems with age a. For convenience, we choose to restrict the ages to

integer values, although the formalism can be readily extended to continuous functions.

The frequency function satisfies the equation:

X N(a)= NO. (28)

We now introduce a new, but related frequency function that depends not only on

the age, but also on the number of years that have passed since upgrading. We define the

function N(n, a) as the number of systems a years old, n years after all No have been

upgraded. All the upgrades are assumed to have been performed at the beginning of the

same year, so

N(O,oa) = N(a). (29)

The new frequency function N(n, a) represents a simple displacement of the initial
frequency function N(a) along the age or a-axis by n years, if we assume that all systems

within the distribution age at the same rate. 3 Thus, the frequency functions are related by

the recurrence relations, which, in turn, result from the displacement relationships among

the functions. Repeated iterations with the recurrence relationship,

N(n, a) = N(n - 1, a - 1), (30)

3 The assumption that all members age at the same rate is reasonable if the "age" is chronological age, but
we also mean it to represent "use age," such as flying hours for aircraft or miles driven by wheeled vehicles.
If different members of the distribution are used at significantly different rates, the frequency function N(a)
will change every year not by a simple translation but also by a deformation. The expressions derived in
this section would then need to be generalized to allow for changes in shape.-
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yields a useful relationship between N(n, a) and N(d):

N(n, a) = N(a - n). (31)

The more general frequency function satisfies the equations

_ N(n,a) = NO, (32)

and

aN(n, oa)= I_ N(r), (33)

n--0 r=l

where the last expression makes use of equation 31 and the following:

N(a) = 0, if a•_<O. (34)

We introduce a new function, the replacement rate R(n), which is the number of
replacement systems to be acquired in year n, such that the acquisition of upgraded and
replacement systems is conducted in the most cost-effective manner. The estimate of this
variable is the point of this section of the paper. For this we need, in addition to the
formal frequency functions just introduced, two additional parameters: the cost-effective

crossover point (n*) and the actual service life of the systems (SL).

Recall that the crossover year n* represents the minimum number of years of
remaining life an upgraded system must possess in order to be a cost-effective alternative
to immediate replacement. In the formalism to follow, we use integer values for number
of years, so the calculated n* must be rounded up to the next larger integer if it is not an
integer, as in the examples. Upgrading will replace some worn components, but there is
still a limit to the life. We assume that all the systems have the same service life, SL, but,

because of age variation, there is variation in remaining life after the upgrade. Some
systems are, of course, closer to the service life limit than others, as the frequency
function illustrates, but all are assumed to expire when their age reaches this limiting
value. This lifetime limit would presumably be determined by test criteria such as the
time at which there would be widespread fatigue cracking, massive component failures,
or other life-limiting phenomena that would be too costly and timely to repair.

With these parameters, the number of replacements needed in year 1 is identical to

the number of systems whose age equals or exceeds SL exactly n* years after upgrading.
In other words, R(1) equals the number of systems that should not be upgraded when cost
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is considered, but should be replaced immediately. In mathematical terms using the

frequency functions just introduced, the replacement rate in year 1 would be

SL-I

R(l) XN(n*,ca) = No - X_ N(n*,a). (35)
a=SL a=1

Since there would be no additional replacements needed for n* years (the oldest

upgraded system that was not replaced has at least n* years remaining in its life, by

construction), the annual replacement rates must be zero throughout this period of time:

R(2) = R(3) =...=R(n*) = 0. (36)

The replacement rates for the years beyond n * are obtained by using the frequency

functions and counting backward from SL. Specifically, they are:

R(n*+l) = N(n*,SL-1),

R(n *+2) = N(n*,SL- 2),

R(SL-1) = N(n*,n*+l) , and

R(n) = Ofor n > SL. (37)

We can use equation 31 to simplify and express replacement rates in terms of the initial

frequency function N(a) and the parameters n * and SL.

SL-I-n*

R(1)= NO- XN(ca), (38)
ar=]

R(2) = R(3) = R(n*) = 0, (39)

and

R(n*+1)=N(SL -n*-1),

R(n*+2) = N(SL-n*-2),

R(SL - 1) =N(),

and

R(n) = 0 for n > SL. (40)

These constitute the basic replacement schedules in terms of the current age distributions,

constrained by cost and the known lifetime of the systems being upgraded.
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The replacement rates also must also satisfy the requirement that over the lifetime

SL, all systems must have been replaced, either initially in year 1, or subsequently after an

upgraded system was retired. This expression is:

SL

SR(n)=No , (41)
n=l

and can easily be shown to be consistent with the set of equations derived above.

4. Example 4: Example 1 with Age Distribution

We illustrate the use of the replacement rate equations by an example. Using the

standard example with n* = 8.14 (rounded up to n* = 9 for this section), assume the

distribution of ages given in Figure 6 for 170 systems. For purposes of illustration,

assume the limiting lifetime SL for each is 25 years. The distribution includes relatively

new systems as well as a number older than SL-n *. These older ones are a lighter color in

the figure and should, by the criteria of this paper, be replaced in year 1, since their

remaining lifetimes are less than n
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Figure 6. Age Distribution of Example Systems

The lowest cost replacement schedule consistent with this frequency is calculated

from the set of equations and is illustrated in Figure 7. Note that the systems that
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exceeded the cutoff time of SL-n* are all replaced in year 1, followed by a gap of n* years

before additional replacements are needed. The schedule for replacements thereafter

becomes a mirror image of the original frequency function N(a).

While Figure 7 illustrates the most cost-effective replacement schedule for the

example, other considerations outside those taken into account here may affect the actual

schedule implemented. For planning purposes, a more level rate of replacements may be

desired, both to keep annual expenditures for this purpose within designated bounds and

to ensure an uninterrupted production rate for the industry producing the replacement

systems. Thus the lengthy gap and the peaks and valleys shown in Figure 7 might

disappear in an actual replacement schedule.
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Figure 7. Optimum Replacement Schedule for Example Systems

5. Inclusion of Performance Differences

In this section we address the differences in performance expected from upgraded

and replacement systems. We have assumed to this point that the differences in

performance are irrelevant to the decision between the Upgrade-First and Replace-Now

alternatives. In general we expect the replacement to be better than the upgrade in some

measures, certainly in mission capable rate, and perhaps in other ways. We need to

quantify the performance difference in order to proceed.
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Let us consider N,, systems that are candidates for upgrading. When replaced,

either now or ultimately, we shall assume that the difference in performance in the

systems means that a different number, Nr, replacement systems are required to provide

the same "performance" as the NV, upgraded systems. The specific definition of
"performance" depends on the actual system being considered and is left unspecified in

this general formalism. It could be the number of mission-capable systems. It could

involve a specified level of firepower delivered or an upper limit on Blue casualties in a

certain scenario. It could be the cargo-carrying capacity. It is open to interpretation as fits

the problem. An example will be given later.

Our assumption about the nature of the performance measure permits us to

establish a relationship between N, and Nr as follows:

Nr = JN, (42)

where (usually) O<f<l. The relative performance factorf is a measure of the performance

of the upgraded system relative to the replacement.

The life cycle cost for the equivalent of N,, systems is now obtained by a

generalization of equation 1 with the insertion of N, and N, where appropriate. The life
cycle cost for upgrading Nr existing systems in year 1 and then replacing them all with Nr

replacements in year n is

LCC,,(L,n) = N,,[A. + C. dk-°5 ]+ Nr[Ard" + Cr d(43)
k=l k=n+l

For the special case where Nr replacement (new) systems are bought in year 1 and no
existing systems are upgraded, we have the following revision to equation 9:

L

LCC,(L) = Nr[A,. + C,. dk-. 5] (44)
k=l

To determine n*, we equate the two life cycle costs, use the relationship between

Nr and N,,, indicated above, and solve as before to get a revised crossover point

expression:
ln[ (1 -d)(ffir - aj)-d°'(,K, - fCr)-

n*= (1- d)fAr -d° 5 (C. - fCc)
In d (45)
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This equation is identical to equation 13 except that a new variable, the relative
performance factor f, has been introduced as a multiplicative factor for the two

replacement cost terms.

6. Example 5: Example 1 with Performance Differences

The sensitivity of results for n * in Example 1 to variations in f is shown in Figure 8
below. The results are extremely sensitive to this factor. For a 10-percent decrease in
performance for the upgrade relative to the replacement (i.e., f=0.9), the required lifetime
jumps from 8.14 years to 12.78 years, a 57-percent increase. For a 20-percent decrease in
performance (f=0.8), the required upgrade lifetime leaps to 30.80 years, a nearly 280-

percent increase from the baseline value.
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Figure 8. Dependence of Required Lifetime of Upgrade on Relative Performance Factor

If residual values are also included in the expanded formalism that treats
differences in performance, equating the total life cycle costs for N, upgraded systems and
Nr replacement systems transforms equations 20 and 21 into the following solution
equation for n:

1-d" +N,4d_ -dL
N•A+d 5N.C. -y +[Nd d-Nj (n)]d- +N Cd0

rrd1-d

=NrAr -N,,Re +NrCrd°*5 1-d g r(d. (46) ..
1-d
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This equation can be simplified by using the relative performance factor f. It is
clear that the expressions obtained are identical to those derived without considering

performance differences (i.e., equations 21 and 22) except that all cost terms associated
with replacement systems-Ar, Cr, and R,--are now multiplied by f. No general closed
form solution can be given for n *; either graphical or numerical means must be used.

7. Risk Issues

Life cycle cost analyses typically involve estimates of parameters that represent

activities far in the future. Accordingly, there is usually considerable risk and uncertainty

associated with LCC estimates. A common approach for dealing with risk is to assign

distributions to the variables in the LCC equation and attempt to use statistical techniques

to develop a distribution of the estimated costs. In many cases, the LCC model is too
complex to perform this analytically, so approximations or simulations are used. The

latter is especially easy to do with today's computer hardware and software capabilities.

To illustrate the simulation approach, we shall again use Example 1 in an Excel
model employing Crystal Ball, a software simulation package that works with Excel
spreadsheets. For ease in following the discussion, we repeat below equation 13, the
solution equation for the crossover point, when all costs are constant, residuals are not

used, performance differences are not an issue, and a single system analysis makes sense.

In[(I (- d )(Ar - A,, ) - dO.-'(C,, - C, )

S (I-d)Ar-do*5 (C C.....
In d

We see that n* depends on the following five variables: d, A,, Ar, Cu, Cr. Since
the discount factor d is a direct function of the interest or discount rate, i, we shall refer to
the latter in this section when discussing the variables. To use Crystal Ball, the variables
in equation 13 that are to have probability distributions are specified in what is known as

Assumption Cells. The equation for n *, a function of these variables, is located in what is
called a Forecast Cell. Before the simulation is started, distributions, where deemed

appropriate, are assigned to each of the variables along with associated distribution

parameters. If a variable is to have a normal distribution, for example, both a mean and a
standard deviation are to be chosen by the analyst. Truncation points can be defined for a

distribution as well. Discrete distributions can also be used. Once the distributions are

defined, the user indicates how many simulation trials are to be conducted. With a simple
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problem like this, 10,000 trials can be run in just several minutes using a typical Pentium

personal computer. The software keeps track of the results, generating such statistics as

mean, median, mode, variance, range, and frequency distribution of the values in the

Forecast Cell(s).

One concern in running a simulation is that a combination of the randomly

selected values for the variables could lead to an improper mathematical operation such
as dividing by zero, or, in this example, the more likely case of trying to take the

logarithm of a negative number. Therefore, the spreadsheet should be designed to check

intermediate results to avoid this so that the simulation is not halted each time an

improper operation is attempted.

8. Example 6: Example 1 with Risk Assessment

Figure 9 shows the distributions we used for Example 1 with illustrative brief

explanations for the choices. Also shown in the figure are the observed means after a

10,000 trial run was performed. This particular figure was extracted from the summary
report developed by the Crystal Ball software and modified to include the explanations.

After using these distributions in the Excel/Crystal Ball model, the key results shown in

Table 2 were obtained.

Table 2. Simulation Results for Sample Problem

Factor Result
Probability that a crossover will be found between 1 and 20 years. 0.728

Probability the Replace-Now option is preferred 0.272
Average crossover point, given a crossover 8.05 years

We see from the table that the estimated probability that the Upgrade-Now option
is preferred is approximately 0.73. The complement, 0.27, is a reasonable measure of the

risk associated with upgrading. In other words, if the Upgrade-First option was selected

through application of equation 13 using average values, 27 percent of the time the
variables in the problem will turn out to have values such that the Replace-Now option
would have been a better choice. The average crossover point of 8.05 years obtained

through the simulation, given that a crossover occurs, compares favorably with the value

of 8.14 years, obtained when constant values were assumed for the inputs.
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Assumption: Discount Rate, i Do not expect rate to go below 3% but
much higher values possible- so right

Triangular distribution with parameters: tailed distribution is reasonable.
Minimum 0.03 dr

Likeliest 0.04
Maximum 0.07

Mean value in simulation was 0.05
0,03 004 .0 0.6 ,7

Assumption: Upgrade Cost, Au Right-tailed distribution because of
possible structural changes. Do not

Lognormal distribution with parameters: expect costs to go below $4 million.
Mean 5.00 Au

Standard Dev. 1.00
Selected range is from 4.00 to +Infinity

Mean value in simulation was 5.25
2.71 4.25 5,79 7.34 8a.

Assumption: Replacement Cost, Ar Symmetrical distribution appears
reasonable. Do not expect cost

Normal distribution with parameters: to go below $30 million.
Mean 35.00 Ar

Standard Dev. 3.00
Selected range is from 30.00 to +Infinity

Mean value in simulation was 35.34
2.00 30.O 35.M0 39.50

Assumption: Annual O&S Cost, Upgrade, Cu Right tail because of possibility
of future expensive structural repairs

Triangular distribution with parameters: Cu

Minimum 1.00
Likeliest 1 .50
Maximum 3.00

Mean value in simulation was 1.83 3.

Assumption: Annual O&S Cost, Replacement, Cr Symmetrical underlying distribution
seems reasonable.

Normal distribution with parameters: Cr

Mean 1.00
Standard Dev. 0.10

Selected range is from 0.85 to +Infinity

Mean value in simulation was 1.01 070 0.85 IM 1.15 1.30

Figure 9. Distributions of Inputs Used in the Simulation
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G. CONCLUDING OBSERVATIONS

We have devised a general formalism within which to address the question of

whether to defer replacements through upgrades or to replace immediately. The

formalism is of sufficient generality that it applies to a large set of acquisition problems

confronting the Department of Defense and other system users. The initial set of

conditions involving only acquisition and operating costs was extended to include

residual values, performance differences, time-dependent costs, and population issues.

Sensitivity of the model to various inputs were displayed and, in some cases, significant

differences in results occurred for rather small changes, e.g., the discount rate and

differences in performance. As with any life cycle cost analysis, there usually is a

concern about the accuracy of costs and cost-related factors used in the model, especially

expenditures far in the future. The last section, Risk Issues, offers one means to address

this concern.
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